The pan caspase inhibitor emricasan improves the hepatic microcirculatory dysfunction of CCl₄-cirrhotic rats leading to portal hypertension amelioration and fibrosis reduction

Jordi Gracia-Sancho¹, Patricia C Contreras², Sergi Vila¹, Héctor Garcia-Calderó¹, Alfred Spada², Jaime Bosch¹
1- Barcelona Hepatic Hemodynamic Lab. IDIBAPS Biomedical Research Institute & CIBEREHD. Barcelona, Spain.
2- Conatus Pharmaceuticals, San Diego, CA.

Background and aims
In cirrhosis, liver microvascular dysfunction is the key factor increasing hepatic vascular resistance (HVR) to portal blood flow that leads to portal hypertension. De-regulated inflammatory and pro-apoptotic processes due to chronic injury play a key role in the dysfunction of liver sinusoidal endothelial and hepatic stellate cells (LSEC & HSC). The present project aimed at characterizing the effects of the pan-caspase inhibitor emricasan on the systemic and hepatic hemodynamic, and LSEC & HSC phenotype in a pre-clinical model of advanced chronic liver disease.

Methods
CCl₄-cirrhotic rats received emricasan (10mg/kg/day, i.p.) or vehicle (carboxymethylcellulose) for 7 days (n=12 per group). Measurements: in vivo systemic and hepatic hemodynamic (mean arterial pressure, MAP; portal pressure, PP; portal blood flow, PBF; and HVR), liver function & injury (bile production, AST, ALT, bilirubin), hepatic microcirculatory function (portal perfusion pressure [PPP] response to incremental doses of acetylcholine), inflammation (IL-1β, IL-6 & TNF-α), fibrosis (Sirius red staining & collagen) and phenotype of LSEC (eNOS, fenestrae porosity) & HSC (α-SMA, and rho kinase [p-moesin/moesin]).

Conclusions
- Emricasan improves liver sinusoidal microvascular dysfunction in a pre-clinical model of advanced cirrhosis, which leads to marked amelioration in fibrosis, portal hypertension and liver function.
- These results encourage its clinical evaluation in the treatment of advanced chronic liver disease.

Liver function, injury and inflammation
Cirrhotic rats receiving emricasan exhibited improved HSC phenotype (α-SMA and Rho kinase) and LSEC phenotype (p-eNOS and fenestrae porosity), which led to significant reduction on liver fibrosis (Sirius Red and collagen I).

Acknowledgement: Study funded by Conatus Pharmaceuticals
Correspondence: jordi.gracia@idibaps.org