PAN-CASPASE INHIBITION PROTECTS AGAINST FIBROTIC NASH INDUCED BY **CHOLINE DEFICIENT AMINO ACID DEFINED DIET (CDAA)**

W. Lu¹, A. Eguchi¹, D. Sirbu¹, P. Contreras², C. Johnson¹, A. Wree¹, D. Povero¹, M. Lazic¹, and A. Feldstein¹ ¹Pediatrics, University of California, San Diego, La Jolla, ²Conatus Pharmaceuticals, San Diego, CA, USA.

PURPOSE / AIM

Hepatocyte cell death is a key feature of nonalcoholic steatohepatitis (NASH)

>Emerging data suggests that inhibition of **caspases** may be an attractive therapeutic approach for patients with NASH >Our **aim** was to determine if the pan-caspase inhibitor, IDN-6556, reduces hepatocellular apoptosis and fibrosis

METHODS

- C57BL/6 mice were fed a CDAA or a choline-sufficient amino acid-defined (CSAA) diet for 20 weeks
- Starting on week 16, mice fed the CDAA diet were subject to drug or placebo treatment via gavage for five weeks

- Liver and blood were collected after week 20
- Hepatocellular apoptosis, fibrosis and inflammatory activity were assessed

RESULTS

Liver Fibrosis was diminished in treated mice: Sirius Red quantification and expression of CTGF mRNA

IDN-6556 administration reduced Hepatic Stellate Cell (HSC) activation: Real-time quantitative PCR of fibrogenic genes in isolated stellate cells

Mice that received the pan-caspase inhibitor showed inhibition of **apoptosis:** Bid, Cleaved Caspase 3 and Cytokeratin 18 Immunoblots

The data shown suggests that oral administration of the experimental drug IDN-6556 inhibits apoptosis and attenuates fibrosis and inflammation associated with experimental NASH. ALT/AST levels (not shown) showed no marked decrease between CDAA treated and CDAA placebo groups, while Insulin levels (not shown) showed a significant decrease in the treated group. The findings indicate that IDN-6556 might be a promising method of therapy and warrants further research

This study was supported in part by an unrestricted grant from Conatus Pharmaceutical and NIH grant DK082451 to AEF

RESULTS

Neutrophil infiltration in the liver declined after exposure to the drug: Myeloperoxidase (MPO) Staining and Osteopontin mRNA Expression

CONCLUSION

FUNDING

